CD4 antibody | CVS4

100% Secure


Mouse anti Horse CD4:FITC

Mouse anti Horse CD4

Mouse anti Horse CD4:RPE

Product Type
Monoclonal Antibody
Clone
CVS4
Isotype
IgG1
Product CodeApplicationsDatasheetMSDSPack SizeList PriceQuantity
MCA1078F F 0.1 mg
MCA1078GA C F IP 0.1 mg
MCA1078PE F 100 Tests
Mouse anti Horse CD4 antibody, clone CVS4 recognizes Equine CD4, a ~58 kDa cell surface glycoprotein that is primarily expressed on a subpopulation of T lymphocytes. As in humans, equine CD4 expression is mutually exclusive with CD8 expression on mature T-cells

A study undertaken using Mouse anti Horse CD4, clone CVS4 to identify CD4 on several wild african equid species indicates that the CVS4 clone recognizes Somali wild ass (Equus asinus) but not Grévy's Zebra (E. grevyi) or Hartmann's Mountain Zebra (E. zebra).

In addition to the CVS4 clone, other CVS clones recognising equine cell surface and MHC antigen are available from Bio-Rad.

Product Details

Target Species
Horse
Product Form
Purified IgG conjugated to Fluorescein Isothiocyanate Isomer 1 (FITC) - liquid
Product Form
Purified IgG - liquid
Product Form
Purified IgG conjugated to R. Phycoerythrin (RPE) - lyophilized
Reconstitution
Reconstitute with 1.0 ml distilled water
Preparation
Purified IgG prepared by affinity chromatography on Protein A from tissue culture supernatant
Preparation
Purified IgG prepared by affinity chromatography on Protein A from tissue culture supernatant
Preparation
Purified IgG prepared by affinity chromatography on Protein G from tissue culture supernatant
Buffer Solution
Phosphate buffered saline
Buffer Solution
Phosphate buffered saline
Buffer Solution
Phosphate buffered saline
Preservative Stabilisers
0.09% Sodium Azide (NaN3)
1% Bovine Serum Albumin
Preservative Stabilisers
0.09% Sodium Azide (NaN3)
Preservative Stabilisers
0.09% Sodium Azide (NaN3)
1% Bovine Serum Albumin
5% Sucrose
Carrier Free
Yes
Immunogen
Equine thymocytes.
Approx. Protein Concentrations
IgG concentration 0.1mg/ml
Approx. Protein Concentrations
IgG concentration 1.0mg/ml
Fusion Partners
Spleen cells from immunised BALB/c mice were fused with cells of the X63-Ag 8.653 mouse myeloma cell line.

Storage Information

Storage
Store at +4oC or at -20oC if preferred.
Storage in frost-free freezers is not recommended.
This product should be stored undiluted. This product is photosensitive and should be protected from light.
Avoid repeated freezing and thawing as this may denature the antibody. Should this product contain a precipitate we recommend microcentrifugation before use.
Storage
Store at +4oC or at -20oC if preferred.

This product should be stored undiluted.

Storage in frost-free freezers is not recommended. Avoid repeated freezing and thawing as this may denature the antibody. Should this product contain a precipitate we recommend microcentrifugation before use.
Storage
Prior to reconstitution store at +4oC.
After reconstitution store at +4oC.
DO NOT FREEZE. This product should be stored undiluted. This product is photosensitive and should be protected from light. Should this product contain a precipitate we recommend microcentrifugation before use.
Shelf Life
18 months from date of despatch.
Shelf Life
18 months from date of despatch.
Shelf Life
12 months from date of reconstitution.

More Information

UniProt
F6Y6X8 Related reagents
Regulatory
For research purposes only

Applications of CD4 antibody

This product has been reported to work in the following applications. This information is derived from testing within our laboratories, peer-reviewed publications or personal communications from the originators. Please refer to references indicated for further information. For general protocol recommendations, please visit the antibody protocols page.
Application Name Verified Min Dilution Max Dilution
Flow Cytometry Neat 1/10
Flow Cytometry 1/25 1/200
Immunohistology - Frozen
Immunoprecipitation
Flow Cytometry Neat
Where this antibody has not been tested for use in a particular technique this does not necessarily exclude its use in such procedures. Suggested working dilutions are given as a guide only. It is recommended that the user titrates the antibody for use in their own system using appropriate negative/positive controls.
Where this antibody has not been tested for use in a particular technique this does not necessarily exclude its use in such procedures. Suggested working dilutions are given as a guide only. It is recommended that the user titrates the antibody for use in their own system using appropriate negative/positive controls.
Where this antibody has not been tested for use in a particular technique this does not necessarily exclude its use in such procedures. Suggested working dilutions are given as a guide only. It is recommended that the user titrates the antibody for use in their own system using appropriate negative/positive controls.
Flow Cytometry
Use 10ul of the suggested working dilution to label 106 cells in 100ul.
Flow Cytometry
Use 10ul of the suggested working dilution to label 106 cells in 100ul.
Flow Cytometry
Use 10ul of the suggested working dilution to label 106 cells in 100ul.

Useful Reagents Available

Description Product Code Pack Size Applications List Price Quantity
Mouse anti Horse CD8:RPE MCA2385PE 100 Tests F
Mouse anti Horse CD8:FITC MCA2385F 0.1 mg F
Mouse anti Horse CD8:RPE MCA2385PE 100 Tests F
Mouse anti Horse CD8:FITC MCA2385F 0.1 mg F

Application Based External Images

Flow Cytometry

Product Specific References

References for CD4 antibody

  1. Lunn, D.P. et al. (1991) Three monoclonal antibodies identifying antigens on all equine T lymphocytes, and two mutually exclusive T-lymphocyte subsets.
    Immunology. 74 (2): 251-7.
  2. Kydd, J. et al. (1994) Report of the First International Workshop on Equine Leucocyte Antigens, Cambridge, UK, July 1991.
    Vet Immunol Immunopathol. 42 (1): 3-60.
  3. Deeg,C.A. et al. (2004) The uveitogenic potential of retinal S-antigen in horses.
    Invest Ophthalmol Vis Sci. 45: 2286-92
  4. Pearson, W. et al. (2007) Low-dose ginseng (Panax quinquefolium) modulates the course and magnitude of the antibody response to vaccination against equid herpesvirus I in horses.
    Can J Vet Res. 71: 213-7.
  5. Brault, S.A. et al. (2010) The immune response of foals to natural infection with equid herpesvirus-2 and its association with febrile illness.
    Vet Immunol Immunopathol. 137: 136-41.
  6. Goodman, L.B. et al. (2007) A point mutation in a herpesvirus polymerase determines neuropathogenicity.
    PLoS Pathog. 3(11):e160.
  7. Hamza, E.et al. (2012) CD4+CD25+ T cells expressing FoxP3 in Icelandic horses affected with insect bite hypersensitivity.
    Vet Immunol Immunopathol. 148 (1-2): 139-44.
  8. Go, Y.Y. et al. (2010) Complex interactions between the major and minor envelope proteins of equine arteritis virus determine its tropism for equine CD3+ T lymphocytes and CD14+ monocytes.
    J Virol. 84: 4898-911
  9. Lunn, D.P. et al. (1998) Report of the Second Equine Leucocyte Antigen Workshop, Squaw valley, California, July 1995.
    Vet Immunol Immunopathol. 62: 101-143
  10. Ibrahim, S. (2007) Analysis of monoclonal antibody cross-reactivity with leukocytes from equids and cloning of CD28.
    Anchor Text
  11. Lai SW et al. (2004) Influence of Ganoderma lucidum on blood biochemistry and immunocompetence in horses.
    Am J Chin Med. 32 (6): 931-40.
  12. Ferreira-Dias, G. et al. (2005) Seasonal reproduction in the mare: possible role of plasma leptin, body weight and immune status.
    Domest Anim Endocrinol. 29 (1): 203-13.
  13. Agrícola, R. et al. (2008) Blood lymphocyte subpopulations, neutrophil phagocytosis and proteinogram during late pregnancy and postpartum in mares.
    Reprod Domest Anim. 43 (2): 212-7.
  14. de Bruijn, C.M. et al. (2007) Clinical, histopathological and immunophenotypical findings in five horses with cutaneous malignant lymphoma.
    Res Vet Sci. 83 (1): 63-72.
  15. Roberto Da Costa, R.P. et al. (2003) Peripheral blood neutrophil function and lymphocyte subpopulations in cycling mares.
    Reprod Domest Anim. 38 (6): 464-9.
  16. Uner, A. G. et al. (2013) Blood Levels of Selected Metabolic Factors, Cytokines, and Lymphocyte Subpopulations in Arabian and Thoroughbred Horses During the Longest and Shortest Days of the Year
    J Equine Vet Sci. 33 (11): 969-976.
  17. Garcia-Tapia, D. et al. (2006) Replication of West Nile virus in equine peripheral blood mononuclear cells.
    Vet Immunol Immunopathol. 110 (3-4): 229-44.
  18. Tessier, L. et al. (2015) Phenotypic and immunomodulatory properties of equine cord blood-derived mesenchymal stromal cells.
    PLoS One. 10 (4): e0122954.
  19. Khol-Parisini, A. et al. (2012) Highly deoxynivalenol contaminated oats and immune function in horses.
    Arch Anim Nutr. 66 (2): 149-61.
  20. Ziegler, A. et al. (2016) Identification and characterization of equine blood plasmacytoid dendritic cells.
    Dev Comp Immunol. 65: 352-7.
  21. Behrens, N.E. & Gershwin, L.J. (2015) Immune modulation of T regulatory cells and IgE responses in horses vaccinated with West Nile virus vaccine combined with a CpG ODN.
    Vaccine. 33 (43): 5764-71.
  22. Degroote, R.L. et al. (2017) Formin like 1 expression is increased on CD4+ T lymphocytes in spontaneous autoimmune uveitis.
    J Proteomics. 154: 102-108.
  23. Krakowski. L. et al. (2017) Changes in blood lymphocyte subpopulations and expression of MHC-II molecules in wild mares before and after parturition
    J Vet Res. 61 (2): 217-21.