CD4 Alpha antibody | MIL17

100% Secure


Mouse anti Pig CD4 Alpha:FITC

Mouse anti Pig CD4 Alpha

Mouse anti Pig CD4 Alpha:RPE

Product Type
Monoclonal Antibody
Clone
MIL17
Isotype
IgG2b
Product CodeApplicationsDatasheetMSDSPack SizeList PriceQuantity
MCA1749F F 0.1 mg
MCA1749GA C* F 0.1 mg
MCA1749PE F 100 Tests
Mouse anti Porcine CD4 alpha, clone MIL17 recognizes a ~55 kDa porcine homologue to the human CD4 antigen found on the surface of helper-T cells. MIL-17 was confirmed as a member of the CD4 alpha cluster at the ‘Third International Workshop on Swine Leukocyte Differentiation Antigens’ (Haverson et al. 2001). Porcine CD4 is a type 1 trans-membrane member of the immunoglobulin superfamily.

Pigs appear unusual amongst mammalian species as they appear to have four populations of resting T lymphocytes. In addition to the two populations of mutually exclusive CD4+/CD8- and CD4-/CD8+ lymphocytes, they also appear to have significant populations of CD4-/CD8- and CD4+/CD8+ cells. Lymphoblasts with a double positive phenotype have been described in other species but this is not the case for mature T lymphocytic calls (Saalmuller et al. 1987)

Mouse anti Pig CD4 alpha, clone MIL17 stains a population of cells with characteristic lymphocyte morphology in immunohistochemistry (Inman et al. 2010).

Product Details

Target Species
Pig
Product Form
Purified IgG conjugated to Fluorescein Isothiocyanate Isomer 1 (FITC) - liquid
Product Form
Purified IgG - liquid
Product Form
Purified IgG conjugated to R. Phycoerythrin (RPE) - lyophilized
Reconstitution
Reconstitute with 1.0 ml distilled water
Preparation
Purified IgG prepared by affinity chromatography on Protein A from tissue culture supernatant
Preparation
Purified IgG prepared by affinity chromatography on Protein A from tissue culture supernatant
Preparation
Purified IgG prepared by affinity chromatography on Protein A from tissue culture supernatant
Buffer Solution
Phosphate buffered saline
Buffer Solution
Phosphate buffered saline
Buffer Solution
Phosphate buffered saline
Preservative Stabilisers
0.09%Sodium Azide
1%Bovine Serum Albumin
Preservative Stabilisers
0.09% Sodium Azide (NaN3)
Preservative Stabilisers
0.09%Sodium Azide
1%Bovine Serum Albumin
5%Sucrose
Carrier Free
Yes
Immunogen
Leucocytes isolated from porcine gut lamina propria.
Approx. Protein Concentrations
IgG concentration 0.1mg/ml
Approx. Protein Concentrations
IgG concentration 1.0 mg/ml

Storage Information

Storage
Store at +4oC or at -20oC if preferred.

This product should be stored undiluted.

Storage in frost free freezers is not recommended. This product is photosensitive and should be protected from light.

Avoid repeated freezing and thawing as this may denature the antibody. Should this product contain a precipitate we recommend microcentrifugation before use.
Storage
Store at +4oC or at -20oC if preferred.

This product should be stored undiluted.

Storage in frost free freezers is not recommended. Avoid repeated freezing and thawing as this may denature the antibody. Should this product contain a precipitate we recommend microcentrifugation before use.
Storage
Prior to reconstitution store at +4oC. Following reconstitution store at +4oC.

DO NOT FREEZE.

This product should be stored undiluted. This product is photosensitive and should be protected from light. Should this product contain a precipitate we recommend microcentrifugation before use.
Shelf Life
18 months from date of despatch.
Shelf Life
18 months from date of despatch
Shelf Life
12 months from date of reconstitution.

More Information

Regulatory
For research purposes only

Applications of CD4 Alpha antibody

This product has been reported to work in the following applications. This information is derived from testing within our laboratories, peer-reviewed publications or personal communications from the originators. Please refer to references indicated for further information. For general protocol recommendations, please visit the antibody protocols page.
Application Name Verified Min Dilution Max Dilution
Flow Cytometry Neat
Flow Cytometry 1/25 1/200
Immunohistology - Frozen 1
Immunohistology - Paraffin
Flow Cytometry Neat
  1. 1The epitope recognised by this antibody is reported to be sensitive to formaldehyde fixation and tissue processing. Bio-Rad recommends the use of acetone fixation for frozen sections.
Where this antibody has not been tested for use in a particular technique this does not necessarily exclude its use in such procedures. Suggested working dilutions are given as a guide only. It is recommended that the user titrates the antibody for use in their own system using appropriate negative/positive controls.
Where this product has not been tested for use in a particular technique this does not necessarily exclude its use in such procedures. Suggested working dilutions are given as a guide only. It is recommended that the user titrates the product for use in their own system using appropriate negative/positive controls.
Where this antibody has not been tested for use in a particular technique this does not necessarily exclude its use in such procedures. Suggested working dilutions are given as a guide only. It is recommended that the user titrates the antibody for use in their own system using appropriate negative/positive controls.
Flow Cytometry
Use 10ul of the suggested working dilution to label 106 cells in 100ul.
Flow Cytometry
Use 10ul of the suggested working dilution to label 106 cells in 100ul
Flow Cytometry
Use 10ul of the suggested working dilution to label 106 cells in 100ul.

Secondary Antibodies Available

Description Product Code Pack Size Applications List Price Quantity
Human anti Mouse IgG2b:FITC HCA038F 0.1 mg F
Human anti Mouse IgG2b:HRP HCA038P 0.1 mg E
Goat anti Mouse IgG (H/L):Alk. Phos. (Multi Species Adsorbed) STAR117A 0.5 mg E WB
Goat anti Mouse IgG (H/L):DyLight®488 (Multi Species Adsorbed) STAR117D488GA 0.1 mg F IF
Goat anti Mouse IgG (H/L):DyLight®549 (Multi Species Adsorbed) STAR117D549GA 0.1 mg F IF WB
Goat anti Mouse IgG (H/L):DyLight®649 (Multi Species Adsorbed) STAR117D649GA 0.1 mg F IF
Goat anti Mouse IgG (H/L):DyLight®680 (Multi Species Adsorbed) STAR117D680GA 0.1 mg F WB
Goat anti Mouse IgG (H/L):DyLight®800 (Multi Species Adsorbed) STAR117D800GA 0.1 mg F IF WB
Goat anti Mouse IgG (H/L):FITC (Multi Species Adsorbed) STAR117F 0.5 mg F
Goat anti Mouse IgG (H/L):HRP (Multi Species Adsorbed) STAR117P 0.5 mg E WB
Goat anti Mouse IgG (Fc):FITC STAR120F 1 mg C F
Goat anti Mouse IgG (Fc):HRP STAR120P 1 mg E WB
Rabbit F(ab')2 anti Mouse IgG:RPE STAR12A 1 ml F
Rabbit F(ab')2 anti Mouse IgG:HRP (Human Adsorbed) STAR13B 1 mg C E P RE WB
Goat anti Mouse IgG:FITC (Rat Adsorbed) STAR70 0.5 mg F
Goat anti Mouse IgG:RPE (Rat Adsorbed) STAR76 1 ml F
Goat anti Mouse IgG:HRP (Rat Adsorbed) STAR77 0.5 mg C E P
Goat anti Mouse IgG/A/M:Alk. Phos. STAR87A 1 mg C E WB
Goat anti Mouse IgG/A/M:HRP (Human Adsorbed) STAR87P 1 mg E
Rabbit F(ab')2 anti Mouse IgG:Dylight®800 STAR8D800GA 0.1 mg F IF WB
Rabbit F(ab')2 anti Mouse IgG:FITC STAR9B 1 mg F

Negative Isotype Controls Available

Description Product Code Pack Size Applications List Price Quantity
Mouse IgG2b Negative Control:FITC MCA691F 100 Tests F
Mouse IgG2b Negative Control MCA691 100 Tests F
Mouse IgG2b Negative Control:RPE MCA691PE 100 Tests F

Useful Reagents Available

Description Product Code Pack Size Applications List Price Quantity
Mouse anti Pig CD45 MCA1222GA 0.1 mg C F IF
Mouse anti Pig wCD8 Alpha MCA1223GA 0.1 mg C F
Rat anti Human CD3 MCA1477 0.2 mg C F* IF P* WB

Application Based External Images

Flow Cytometry

Immunofluorescence

Immunohistology - Frozen

Product Specific References

References for CD4 Alpha antibody

  1. Saalmüller A et al. (2001) Summary of workshop findings for porcine T-lymphocyte-specific monoclonal antibodies.
    Vet Immunol Immunopathol. 80 (1-2): 35-52.
  2. Castellano, G. et al. (2010) Therapeutic targeting of classical and lectin pathways of complement protects from ischemia-reperfusion-induced renal damage.
    Am J Pathol. 176: 1648-59.
  3. Inman, C.F. et al. (2010) Dendritic cells interact with CD4 T cells in intestinal mucosa.
    J Leukoc Biol. 88 (3): 571-8.
  4. Kick AR et al. (2011) Evaluation of peripheral lymphocytes after weaning and vaccination for Mycoplasma hyopneumoniae.
    Res Vet Sci. 91 (3): e68-72.
  5. Kick, A.R. et al. (2012) Effects of stress associated with weaning on the adaptive immune system in pigs.
    J Anim Sci. 90: 649-56.
  6. Goujon, J.M. et al. (2000) Influence of cold-storage conditions on renal function of autotransplanted large pig kidneys.
    Kidney Int. 58: 838-50.
  7. Tambuyzer BR et al. (2012) Osteopontin alters the functional profile of porcine microglia in vitro.
    Cell Biol Int. 36 (12): 1233-8.
  8. Tuchscherer, M. et al. (2012) Effects of inadequate maternal dietary protein:carbohydrate ratios during pregnancy on offspring immunity in pigs.
    BMC Vet Res. 8: 232.
  9. Cao, D. et al. (2010) Synthetic innate defence regulator peptide enhances in vivo immunostimulatory effects of CpG-ODN in newborn piglets.
    Vaccine. 28: 6006-13.
  10. Clapperton, M. et al. (2005) Associations of weight gain and food intake with leukocyte sub-sets in Large White pigs
    Livestock Production Science 96: 249-60
  11. Clapperton, M. et al. (2005) Innate immune traits differ between Meishan and Large White pigs.
    Vet Immunol Immunopathol. 104: 131-44.
  12. Clapperton, M. et al. (2008) Pig peripheral blood mononuclear leucocyte subsets are heritable and genetically correlated with performance.
    Animal. 2: 1575-84.
  13. Faure, J.P. et al. (2002) Polyethylene glycol reduces early and long-term cold ischemia-reperfusion and renal medulla injury.
    J Pharmacol Exp Ther. 2002 Sep;302(3):861-70.
  14. Faure, J.P. et al. (2004) Evidence for protective roles of polyethylene glycol plus high sodium solution and trimetazidine against consequences of renal medulla ischaemia during cold preservation and reperfusion in a pig kidney model.
    Nephrol Dial Transplant. 19: 1742-51.
  15. Inman, C.F. et al. (2012) Neonatal colonisation expands a specific intestinal antigen-presenting cell subset prior to CD4 T-cell expansion, without altering T-cell repertoire.
    PLoS One. 7(3): e33707.
  16. Kick, A.R. et al. (2012) Effects of stress associated with weaning on the adaptive immune system in pigs.
    J Anim Sci. 90: 649-56.
  17. Langerhuus, S.N. et al. (2010) Brief report: biomarkers of aortic vascular prosthetic graft infection in a porcine model with Staphylococcus aureus.
    Eur J Clin Microbiol Infect Dis. 29: 1453-6.
  18. Lu, X. et al. (2012) Genome-wide association study for T lymphocyte subpopulations in swine.
    BMC Genomics. 13: 488.
  19. Monroy-Salazar, H.G. et al. (2012) Effects of a live yeast dietary supplement on fecal coliform counts and on peripheral blood CD4+ and CD8+ lymphocyte subpopulations in nursery pigs.
    J Swine Health Prod 20: 276-282.
  20. Shi, K. et al. (2008) Changes in peripheral blood leukocyte subpopulations in piglets co-infected experimentally with porcine reproductive and respiratory syndrome virus and porcine circovirus type 2.
    Vet Microbiol. 129: 367-77.
  21. Spreeuwenberg, M.A. et al. (2001) Small intestine epithelial barrier function is compromised in pigs with low feed intake at weaning.
    J Nutr. 131: 1520-7.
  22. Tambuyzer, B.R. et al. (2012) Osteopontin alters the functional profile of porcine microglia in vitro.
    Cell Biol Int. 36: 1233-8.
  23. Zelnickova, P. et al. (2007) Intracellular cytokine detection by flow cytometry in pigs: fixation, permeabilization and cell surface staining.
    J Immunol Methods. 327: 18-29.
  24. Kvist, P.H. et al. (2010) Effect of subcutaneous glucose sensor implantation on skin mRNA expression in pigs.
    Diabetes Technol Ther. 12: 791-9.
  25. Lefevre, E.A. et al. (2012) Immune responses in pigs vaccinated with adjuvanted and non-adjuvanted A(H1N1)pdm/09 influenza vaccines used in human immunization programmes.
    PLoS One. 7(3): e32400.
  26. Akershoek, J.J. et al. (2016) Cell therapy for full-thickness wounds: are fetal dermal cells a potential source?
    Cell Tissue Res. 364 (1): 83-94.
  27. Liu J et al. (2016) The Role of Porcine Monocyte Derived Dendritic Cells (MoDC) in the Inflammation Storm Caused by Streptococcus suis Serotype 2 Infection.
    PLoS One. 11 (3): e0151256.
  28. Liermann, W. et al. (2016) Effects of two commercial diets and technical feed treatment on stomach lesions and immune system of fattening pigs.
    J Anim Physiol Anim Nutr (Berl). Nov 2. [Epub ahead of print]
  29. Gardner, D.S. et al. (2016) Remote effects of acute kidney injury in a porcine model.
    Am J Physiol Renal Physiol. 310 (4): F259-71.
  30. Hemmink, J.D. et al. (2016) Distinct immune responses and virus shedding in pigs following aerosol, intra-nasal and contact infection with pandemic swine influenza A virus, A(H1N1)09.
    Vet Res. 47 (1): 103.
  31. Dąbrowski, M. et al. (2017) The Effect of Deoxynivalenol on Selected Populations of Immunocompetent Cells in Porcine Blood-A Preliminary Study.
    Molecules. 22 (5)Apr 26 [Epub ahead of print].
  32. Hsu, W.T. et al. (2013) Prostaglandin E2 potentiates mesenchymal stem cell-induced IL-10+IFN-γ+CD4+ regulatory T cells to control transplant arteriosclerosis.
    J Immunol. 190 (5): 2372-80.

Further Reading

  1. Piriou-Guzylack, L. (2008) Membrane markers of the immune cells in swine: an update.
    Vet Res. 39: 54.