CD14 antibody | MIL2





Product Details
- Target Species
- Pig
- Species Cross-Reactivity
-
Target Species Cross Reactivity Human - N.B. Antibody reactivity and working conditions may vary between species.
- Product Form
- Purified IgG conjugated to Fluorescein Isothiocyanate Isomer 1 (FITC) - liquid
- Product Form
- Purified IgG - liquid
- Preparation
- Purified IgG prepared by affinity chromatography on Protein G from tissue culture supernatant
- Preparation
- Purified IgG prepared by affinity chromatography on Protein A from tissue culture supernatant
- Buffer Solution
- Phosphate buffered saline
- Buffer Solution
- Phosphate buffered saline
- Preservative Stabilisers
0.09% Sodium Azide (NaN3) 1% Bovine Serum Albumin - Preservative Stabilisers
- 0.09% Sodium Azide (NaN3)
- Carrier Free
- Yes
- Approx. Protein Concentrations
- IgG concentration 0.1mg/ml.
- Approx. Protein Concentrations
- IgG concentration 1.0 mg/ml
Storage Information
- Storage
- Store at +4oC or at -20oC if preferred.
Storage in frost-free freezers is not recommended.
This product should be stored undiluted.
This product is photosensitive and should be protected from light.
Avoid repeated freezing and thawing as this may denature the antibody.
Should this product contain a precipitate we recommend microcentrifugation before use. - Storage
- Store at +4oC or at -20oC if preferred.
This product should be stored undiluted.
Storage in frost-free freezers is not recommended. Avoid repeated freezing and thawing as this may denature the antibody. Should this product contain a precipitate we recommend microcentrifugation before use. - Guarantee
- 12 months from date of despatch
- Guarantee
- 12 months from date of despatch
More Information
- UniProt
- A2SW51
- Regulatory
- For research purposes only
Applications of CD14 antibody
Application Name | Verified | Min Dilution | Max Dilution |
---|---|---|---|
Flow Cytometry | |||
Flow Cytometry | 1/25 | 1/200 | |
Immunofluorescence | |||
Immunohistology - Frozen |
- Flow Cytometry
- Use 10ul of the suggested working dilution to label 106 cells in 100ul.
- Flow Cytometry
- Use 10ul of the suggested working dilution to label 106 cells in 100ul.
Secondary Antibodies Available
Negative Isotype Controls Available
Description | Product Code | Applications | Pack Size | List Price | Quantity |
---|---|---|---|---|---|
Mouse IgG2b Negative Control:FITC | MCA691F | F | 100 Tests |
![]() |
|
Mouse IgG2b Negative Control | MCA691 | F | 100 Tests |
![]() |
Product Specific References
Source Reference
-
Haverson, K. et al. (1994) Characterization of monoclonal antibodies specific for monocytes, macrophages and granulocytes from porcine peripheral blood and mucosal tissues.
J Immunol Methods. 170 (2): 233-45.
References for CD14 antibody
-
Hauet, T. et al. (2000) Trimetazidine reduces renal dysfunction by limiting the cold ischemia/reperfusion injury in autotransplanted pig kidneys.
J Am Soc Nephrol. 11: 138-48. -
Thacker, E. et al. (2001) Summary of workshop findings for porcine myelomonocytic markers.
Vet Immunol Immunopathol. 80 (1-2): 93-109. -
Thorgersen, E.B. et al. (2010) CD14 inhibition efficiently attenuates early inflammatory and hemostatic responses in Escherichia coli sepsis in pigs.
FASEB J. 24: 712-22. -
Goujon, J.M. et al. (2000) Influence of cold-storage conditions on renal function of autotransplanted large pig kidneys.
Kidney Int. 58: 838-50. -
Li, Y. et al. (2014) Identification of apoptotic cells in the thymus of piglets infected with highly pathogenic porcine reproductive and respiratory syndrome virus.
Virus Res. 189: 29-33. -
Summerfield, A. et al. (2003) Porcine peripheral blood dendritic cells and natural interferon-producing cells.
Immunology. 110: 440-9. -
Vanderheijden, N. et al. (2003) Involvement of sialoadhesin in entry of porcine reproductive and respiratory syndrome virus into porcine alveolar macrophages.
J Virol. 77: 8207-15. -
Barratt-Due, A. et al. (2011) Ornithodoros moubata Complement Inhibitor Is an Equally Effective C5 Inhibitor in Pigs and Humans.
J Immunol. 187: 4913-9. -
Hauet, T. et al. (2002) Polyethylene glycol reduces the inflammatory injury due to cold ischemia/reperfusion in autotransplanted pig kidneys.
Kidney Int. 62: 654-67. -
Kapetanovic, R. et al. (2012) Pig bone marrow-derived macrophages resemble human macrophages in their response to bacterial lipopolysaccharide.
J Immunol. 188: 3382-94. -
Thorgersen, E.B. et al. (2009) Inhibition of complement and CD14 attenuates the Escherichia coli-induced inflammatory response in porcine whole blood.
Infect Immun. 77: 725-32. -
Zelnickova, P. et al. (2007) Intracellular cytokine detection by flow cytometry in pigs: fixation, permeabilization and cell surface staining.
J Immunol Methods. 327: 18-29. -
Facci, M.R. et al. (2011) Stability of expression of reference genes in porcine peripheral blood mononuclear and dendritic cells.
Vet Immunol Immunopathol. 141: 11-5. -
Koutná, I. et al. (2012) Flow Cytometry Analysis of Intracellular Protein
In: Flow Cytometry - Recent Perspectives, Schmid, I. (Ed.), ISBN: 978-953-51- -
Facci, M.R. et al. (2010) A comparison between isolated blood dendritic cells and monocyte-derived dendritic cells in pigs.
Immunology. 129: 396-405. -
Schierack, P. et al. (2009) Effects of Bacillus cereus var. toyoi on immune parameters of pregnant sows.
Vet Immunol Immunopathol.127: 26-37. -
Lundeland, B. et al. (2011) Severe gunshot injuries in a porcine model: impact on central markers of innate immunity.
Acta Anaesthesiol Scand. 55: 28-34. -
Thorgersen, E.B. et al. (2008) Cyanobacterial LPS antagonist (CyP)-a novel and efficient inhibitor of Escherichia coli LPS-induced cytokine response in the pig.
Mol Immunol. 45: 3553-7. -
Schierack, P. et al. (2007) Bacillus cereus var. toyoi enhanced systemic immune response in piglets.
Vet Immunol Immunopathol. 118: 1-11. -
Ondrackova, P. et al. (2012) Interaction of porcine neutrophils with different strains of enterotoxigenic Escherichia coli.
Vet Microbiol. 160: 108-16. -
Ondrackova, P. et al. (2013) Phenotypic characterisation of the monocyte subpopulations in healthy adult pigs and Salmonella-infected piglets by seven-colour flow cytometry.
Res Vet Sci. 94 (2): 240-5. -
Vicenova, M. et al. (2014) Evaluation of in vitro and in vivo anti-inflammatory activity of biologically active phospholipids with anti-neoplastic potential in porcine model.
BMC Complement Altern Med. 14: 339. -
Alvarez, B. et al. (2015) Phenotypic and functional heterogeneity of CD169+ and CD163+ macrophages from porcine lymph nodes and spleen.
Dev Comp Immunol. 44: 44-9. -
Moffat, L. et al. (2014) Development and characterisation of monoclonal antibodies reactive with porcine CSF1R (CD115).
Dev Comp Immunol. 47 (1): 123-8. -
Kyrova K et al. (2014) The response of porcine monocyte derived macrophages and dendritic cells to Salmonella typhimurium and lipopolysaccharide.
BMC Vet Res. 10: 244. -
Nguyen, D.N. et al. (2016) Oral antibiotics increase blood neutrophil maturation and reduce bacteremia and necrotizing enterocolitis in the immediate postnatal period of preterm pigs.
Innate Immun. 22 (1): 51-62. -
Egge, K.H. et al. (2015) Organ inflammation in porcine Escherichia coli sepsis is markedly attenuated by combined inhibition of C5 and CD14.
Immunobiology. 220 (8): 999-1005. -
Liu J et al. (2016) The Role of Porcine Monocyte Derived Dendritic Cells (MoDC) in the Inflammation Storm Caused by Streptococcus suis Serotype 2 Infection.
PLoS One. 11 (3): e0151256. -
Singleton, H. et al. (2016) Establishing Porcine Monocyte-Derived Macrophage and Dendritic Cell Systems for Studying the Interaction with PRRSV-1.
Front Microbiol. 7: 832. -
Zemankova, N. et al. (2016) Bovine lactoferrin free of lipopolysaccharide can induce a proinflammatory response of macrophages.
BMC Vet Res. 12 (1): 251. -
Auray, G. et al. (2016) Characterization and Transcriptomic Analysis of Porcine Blood Conventional and Plasmacytoid Dendritic Cells Reveals Striking Species-Specific Differences.
J Immunol. Nov 11. pii: 1600672. [Epub ahead of print] -
Kavanová L et al. (2017) Concurrent infection with porcine reproductive and respiratory syndrome virus and Haemophilus parasuis in two types of porcine macrophages: apoptosis, production of ROS and formation of multinucleated giant cells.
Vet Res. 48 (1): 28. -
Bacou, E. et al. (2017) β2-adrenoreceptor stimulation dampens the LPS-induced M1 polarization in pig macrophages.
Dev Comp Immunol. 76: 169-76. -
Yang, G. et al. (2017) Characterizing porcine invariant natural killer T cells: A comparative study with NK cells and T cells.
Dev Comp Immunol. 76: 343-351. -
Uitterdijk, A. et al. (2017) Time course of VCAM-1 expression in reperfused myocardial infarction in swine and its relation to retention of intracoronary administered bone marrow-derived mononuclear cells.
PLoS One. 12 (6): e0178779. -
Sánchez, E.G. et al. (2017) Phenotyping and susceptibility of established porcine cells lines to African Swine Fever Virus infection and viral production.
Sci Rep. 7 (1): 10369. -
Fernández-Caballero, T. et al. (2018) Phenotypic and functional characterization of porcine bone marrow monocyte subsets.
Dev Comp Immunol. 81: 95-104. -
Sautter, C.A. et al. (2018) Phenotypic and functional modulations of porcine macrophages by interferons and interleukin-4.
Dev Comp Immunol. 84: 181-92. -
López, E. et al. (2019) Identification of very early inflammatory markers in a porcine myocardial infarction model.
BMC Vet Res. 15 (1): 91.
Further Reading
-
Piriou-Guzylack, L. (2008) Membrane markers of the immune cells in swine: an update.
Vet Res. 39: 54. -
Petersen, C.B. et al. (2007) Cloning, characterization and mapping of porcine CD14 reveals a high conservation of mammalian CD14 structure, expression and locus organization.
Dev Comp Immunol. 31: 729-37. -
Sanz, G. et al. (2007) Molecular cloning, chromosomal location, and expression analysis of porcine CD14.
Dev Comp Immunol. 31(7):738-47.
Fluorescent Spectraviewer
Watch the Tool Tutorial Video ▸
How to Use the Spectraviewer?
Watch the Tool Tutorial Video ▸
- Start by selecting the application you are interested in, with the option to select an instrument from the drop down menu or create a customized instrument
- Select the fluorophores or fluorescent proteins you want to include in your panel to check compatibility
- Select the lasers and filters you wish to include
- Select combined or multi-laser view to visualize the spectra