CD14 antibody | TÜK4

Mouse anti Human CD14

Product Type
Monoclonal Antibody
Clone
TÜK4
Isotype
IgG2a
Specificity
CD14

Product Code Applications Pack Size List Price Your Price Qty
MCA1568
Datasheet Datasheet Datasheet
SDS Safety Datasheet SDS
E F IF WB 0.2 mg loader
List Price Your Price
loader
MCA1568GA
Datasheet Datasheet Datasheet
SDS Safety Datasheet SDS
E F IF 0.1 mg loader
List Price Your Price
loader
MCA1568T
Datasheet Datasheet Datasheet
SDS Safety Datasheet SDS
E F WB 25 µg loader
List Price Your Price
loader
Search for Batch Specific Datasheets

Mouse anti human CD14 antibody, clone TÜK4 recognizes the human CD14 cell surface antigen. CD14 is a ~55 kDa glycoprotein that contains multiple leucine-rich repeats. It is anchored to the cell membrane via a glycosylphosphatidylinositol (GPI) linkage (Simmons et al. 1989), a soluble form of CD14 also exists (Bazil et al. 1986).

CD14 is strongly expressed on the surface of monocytes and macrophages but has also been shown to be expressed on the surface of non-myeloid cells (Jersmann 2005). CD14 functions as a pattern recognition receptor (Pugin et al. 1994, Dziarski et al. 1998) in innate immunity for a variety of ligands, in particular for the LPS (endotoxin) of Gram-negative bacteria.

Mouse anti human CD14 antibody, clone TÜK4 has been shown to block SDF-induced chemotaxis of U937 cells in a dose –dependent manner (Yang et al. 2003). Use of the anti-human CD14 antibody, Low Endotoxin format is recommended for this purpose.

Target Species
Human
Species Cross-Reactivity
Target SpeciesCross Reactivity
Dog
Goat
Cat
Rabbit
Mink
Bovine
Pig
Sheep
Cynomolgus monkey
Llama
N.B. Antibody reactivity and working conditions may vary between species.
Product Form
Purified IgG - liquid
Preparation
MCA1568: Purified IgG prepared by affinity chromatography on Protein A from tissue culture supernatant.
MCA1568GA: Purified IgG prepared by affinity chromatography on Protein A from tissue culture supernatant
MCA1568T: Purified IgG prepared by affinity chromatography on Protein G from tissue culture supernatant.
Buffer Solution
Phosphate buffered saline
Preservative Stabilisers
Pack Size: 0.2 mg, 25 µg
0.09%Sodium Azide
Pack Size: 0.1 mg
0.09% Sodium Azide (NaN3)
Carrier Free
Yes
Approx. Protein Concentrations
IgG concentration 1.0 mg/ml
Regulatory
For research purposes only
Guarantee
12 months from date of despatch

This product is shipped at ambient temperature. It is recommended to aliquot and store at -20°C on receipt. When thawed, aliquot the sample as needed. Keep aliquots at 2-8°C for short term use (up to 4 weeks) and store the remaining aliquots at -20°C.

Avoid repeated freezing and thawing as this may denature the antibody. Storage in frost-free freezers is not recommended.

This product has been reported to work in the following applications. This information is derived from testing within our laboratories, peer-reviewed publications or personal communications from the originators. Please refer to references indicated for further information. For general protocol recommendations, please visit the antibody protocols page.
Application Name Verified Min Dilution Max Dilution
ELISA
Flow Cytometry 1/50 1/200
Immunofluorescence
Western Blotting
Where this antibody has not been tested for use in a particular technique this does not necessarily exclude its use in such procedures. Suggested working dilutions are given as a guide only. It is recommended that the user titrates the antibody for use in their own system using appropriate negative/positive controls.
Flow Cytometry
Use 5ul of the suggested working dilution to label 106 cells or 100ul whole blood.

Description Product Code Applications Pack Size List Price Your Price Quantity
Goat anti Mouse IgG:HRP (Rat Adsorbed) STAR77 C E P 0.5 mg loader
List Price Your Price
loader
Description Goat anti Mouse IgG:HRP (Rat Adsorbed)
Goat anti Mouse IgG:FITC (Rat Adsorbed) STAR70 F 0.5 mg loader
List Price Your Price
loader
Description Goat anti Mouse IgG:FITC (Rat Adsorbed)
Rabbit F(ab')2 anti Mouse IgG:RPE STAR12A F 1 ml loader
List Price Your Price
loader
Description Rabbit F(ab')2 anti Mouse IgG:RPE
Goat anti Mouse IgG/A/M:Alk. Phos. STAR87A C E WB 1 mg loader
List Price Your Price
loader
Description Goat anti Mouse IgG/A/M:Alk. Phos.
Rabbit F(ab')2 anti Mouse IgG:FITC STAR9B F 1 mg loader
List Price Your Price
loader
Description Rabbit F(ab')2 anti Mouse IgG:FITC
Goat anti Mouse IgG:RPE (Rat Adsorbed) STAR76 F 1 ml loader
List Price Your Price
loader
Description Goat anti Mouse IgG:RPE (Rat Adsorbed)
Goat anti Mouse IgG/A/M:HRP (Human Adsorbed) STAR87P E 1 mg loader
List Price Your Price
loader
Description Goat anti Mouse IgG/A/M:HRP (Human Adsorbed)
Rabbit F(ab')2 anti Mouse IgG:HRP (Human Adsorbed) STAR13B C E P RE WB 1 mg loader
List Price Your Price
loader
Description Rabbit F(ab')2 anti Mouse IgG:HRP (Human Adsorbed)
Goat anti Mouse IgG (Fc):FITC STAR120F C F 1 mg loader
List Price Your Price
loader
Description Goat anti Mouse IgG (Fc):FITC
Goat anti Mouse IgG (Fc):HRP STAR120P E WB 1 mg loader
List Price Your Price
loader
Description Goat anti Mouse IgG (Fc):HRP
Goat anti Mouse IgG (H/L):HRP (Multi Species Adsorbed) STAR117P C E WB 0.5 mg loader
List Price Your Price
loader
Description Goat anti Mouse IgG (H/L):HRP (Multi Species Adsorbed)
Goat anti Mouse IgG (H/L):Alk. Phos. (Multi Species Adsorbed) STAR117A E WB 0.5 mg loader
List Price Your Price
loader
Description Goat anti Mouse IgG (H/L):Alk. Phos. (Multi Species Adsorbed)
Goat anti Mouse IgG (H/L):FITC (Multi Species Adsorbed) STAR117F F 0.5 mg loader
List Price Your Price
loader
Description Goat anti Mouse IgG (H/L):FITC (Multi Species Adsorbed)
Goat anti Mouse IgG (H/L):DyLight®488 (Multi Species Adsorbed) STAR117D488GA F IF 0.1 mg loader
List Price Your Price
loader
Description Goat anti Mouse IgG (H/L):DyLight®488 (Multi Species Adsorbed)
Goat anti Mouse IgG (H/L):DyLight®680 (Multi Species Adsorbed) STAR117D680GA F WB 0.1 mg loader
List Price Your Price
loader
Description Goat anti Mouse IgG (H/L):DyLight®680 (Multi Species Adsorbed)
Goat anti Mouse IgG (H/L):DyLight®800 (Multi Species Adsorbed) STAR117D800GA F IF WB 0.1 mg loader
List Price Your Price
loader
Description Goat anti Mouse IgG (H/L):DyLight®800 (Multi Species Adsorbed)
Goat anti Mouse IgG (H/L):DyLight®650 (Multi Species Adsorbed) STAR117D650 F IF 0.1 mg loader
List Price Your Price
loader
Description Goat anti Mouse IgG (H/L):DyLight®650 (Multi Species Adsorbed)
Goat anti Mouse IgG (H/L):DyLight®550 (Multi Species Adsorbed) STAR117D550 F IF WB 0.1 mg loader
List Price Your Price
loader
Description Goat anti Mouse IgG (H/L):DyLight®550 (Multi Species Adsorbed)

Description Product Code Applications Pack Size List Price Your Price Quantity
Mouse IgG2a Negative Control MCA929 F 100 Tests loader
List Price Your Price
loader
Description Mouse IgG2a Negative Control

References for CD14 antibody

  1. Schenk, M. et al. (2005) Macrophages expressing triggering receptor expressed on myeloid cells-1 are underrepresented in the human intestine.
    J Immunol. 174 (1): 517-24.
  2. Willett, B.J. et al. (2003) Expression of CXCR4 on feline peripheral blood mononuclear cells: effect of feline immunodeficiency virus infection.
    J Virol. 77 (1): 709-12.
  3. Soell, M. et al. (1995) Activation of human monocytes by streptococcal rhamnose glucose polymers is mediated by CD14 antigen, and mannan binding protein inhibits TNF-alpha release.
    J Immunol. 154 (2): 851-60.
  4. Bryan, S.A. et al. (2002) Responses of leukocytes to chemokines in whole blood and their antagonism by novel CC-chemokine receptor 3 antagonists.
    Am J Respir Crit Care Med. 165: 1602-9.
  5. Weiss, D.J. (2001) Evaluation of proliferative disorders in canine bone marrow by use of flow cytometric scatter plots and monoclonal antibodies.
    Vet Pathol. 38: 512-8.
  6. Gupta, V.K. et al. (1996) Identification of the sheep homologue of the monocyte cell surface molecule--CD14.
    Vet Immunol Immunopathol. 51 (1-2): 89-99.
  7. Sopp, P. & Howard, C.J. (1997) Cross-reactivity of monoclonal antibodies to defined human leucocyte differentiation antigens with bovine cells.
    Vet Immunol Immunopathol. 56 (1-2): 11-25.
  8. Xiong, W. et al. (2010) Human Flt3L generates dendritic cells from canine peripheral blood precursors: implications for a dog glioma clinical trial.
    PLoS One. 5: e11074.
  9. View The Latest Product References
  10. Werling, D. et al. (1998) Analysis of the phenotype and phagocytic activity of monocytes/macrophages from cattle infected with the bovine leukaemia virus.
    Vet Immunol Immunopathol. 62 (3): 185-95.
  11. Yang, H. et al. (2003) Antibody to CD14 like CXCR4-specific antibody 12G5 could inhibit CXCR4-dependent chemotaxis and HIV Env-mediated cell fusion.
    Immunol Lett. 88 (1): 27-30.
  12. Yoshino, N. et al. (2000) Upgrading of flow cytometric analysis for absolute counts, cytokines and other antigenic molecules of cynomolgus monkeys (Macaca fascicularis) by using anti-human cross-reactive antibodies.
    Exp Anim. 49 (2): 97-110.
  13. Jacobsen, C.N. et al. (1993) Reactivities of 20 anti-human monoclonal antibodies with leucocytes from ten different animal species.
    Vet Immunol Immunopathol. 39 (4): 461-6.
  14. Martel, C.J. & Aasted, B. (2009) Characterization of antibodies against ferret immunoglobulins, cytokines and CD markers.
    Vet Immunol Immunopathol. 132:109-15.
  15. Dalli J et al. (2008) Annexin 1 mediates the rapid anti-inflammatory effects of neutrophil-derived microparticles.
    Blood. 112 (6): 2512-9.
  16. Lybeck, K.R. et al. (2009) Neutralization of interleukin-10 from CD14(+) monocytes enhances gamma interferon production in peripheral blood mononuclear cells from Mycobacterium avium subsp. paratuberculosis-infected goats.
    Clin Vaccine Immunol. 16 (7): 1003-11.
  17. Ferret-Bernard, S. et al. (2010) Cellular and molecular mechanisms underlying the strong neonatal IL-12 response of lamb mesenteric lymph node cells to R-848.
    PLoS One. 5: e13705.
  18. Fulton, B.E. Jr. et al. (2006) Dissemination of bovine leukemia virus-infected cells from a newly infected sheep lymph node.
    J Virol. 80: 7873-84.
  19. Willett, B.J. et al. (2007) Probing the interaction between feline immunodeficiency virus and CD134 by using the novel monoclonal antibody 7D6 and the CD134 (Ox40) ligand.
    J Virol. 81: 9665-79.
  20. Kallapur, S.G. et al. (2011) Pulmonary and systemic inflammatory responses to intra-amniotic IL-1α in fetal sheep.
    Am J Physiol Lung Cell Mol Physiol. 301 (3): L285-95.
  21. Lund, H. et al. (2016) Transient Migration of Large Numbers of CD14(++) CD16(+) Monocytes to the Draining Lymph Node after Onset of Inflammation.
    Front Immunol. 7: 322.
  22. Krueger, L.A. et al. (2016) Gamma delta T cells are early responders to Mycobacterium avium ssp. paratuberculosis in colostrum-replete Holstein calves.
    J Dairy Sci. 99 (11): 9040-50.
  23. Gelain, M.E. et al. (2014) CD44 in canine leukemia: analysis of mRNA and protein expression in peripheral blood.
    Vet Immunol Immunopathol. 159 (1-2): 91-6.
  24. Schaut, R.G. et al. (2015) Bovine viral diarrhea virus type 2 in vivo infection modulates TLR4 responsiveness in differentiated myeloid cells which is associated with decreased MyD88 expression.
    Virus Res. 208: 44-55.
  25. Westover, A.J. et al. (2016) An Immunomodulatory Device Improves Insulin Resistance in Obese Porcine Model of Metabolic Syndrome.
    J Diabetes Res. 2016: 3486727.
  26. Pomeroy, B. et al. (2017) Counts of bovine monocyte subsets prior to calving are predictive for postpartum occurrence of mastitis and metritis.
    Vet Res. 48 (1): 13.
  27. Gibson, A.J. et al. (2016) Differential macrophage function in Brown Swiss and Holstein Friesian cattle.
    Vet Immunol Immunopathol. 181: 15-23.
  28. Martini, V. et al. (2018) Flow cytometry for feline lymphoma: a retrospective study regarding pre-analytical factors possibly affecting the quality of samples.
    J Feline Med Surg. 20 (6): 494-501.
  29. Novacco, M. et al. (2016) Prognostic factors in canine acute leukaemias: a retrospective study.
    Vet Comp Oncol. 14 (4): 409-16.
  30. Feng, P.H. et al. (2018) S100A9+ MDSC and TAM-mediated EGFR-TKI resistance in lung adenocarcinoma: the role of RELB.
    Oncotarget. 9 (7): 7631-43.
  31. Higgins, J.L. et al. (2018) Cell mediated immune response in goats after experimental challenge with the virulent Brucella melitensis strain 16M and the reduced virulence strain Rev. 1.
    Vet Immunol Immunopathol. 202: 74-84.
  32. Penadés, M. et al. (2020) Early deviations in performance, metabolic and immunological indicators affect stayability in rabbit females.
    Animal. 14 (4): 780-9.
  33. Schwarz, E.R. et al. (2020) Experimental Infection of Mid-Gestation Pregnant Female and Intact Male Sheep with Zika Virus.
    Viruses. 12 (3)Mar 07 [Epub ahead of print].
  34. Mas, A. et al. (2020) A further investigation of the leishmaniosis outbreak in Madrid (Spain): low-infectivity phenotype of the Leishmania infantum BOS1FL1 isolate to establish infection in canine cells.
    Vet Immunol Immunopathol. 230: 110148.
  35. Tuohy, J.L. et al. (2020) Immune dysregulation and osteosarcoma: Staphylococcus aureus. downregulates TGF-β and heightens the inflammatory signature in human and canine macrophages suppressed by osteosarcoma.
    Vet Comp Oncol. 18 (1): 64-75.
  36. Sipka, A.S. et al. (2020) The effect of ex vivo. lipopolysaccharide stimulation and nutrient availability on transition cow innate immune cell AKT/mTOR pathway responsiveness.
    J Dairy Sci. 103 (2): 1956-1968.
  37. Lessard, M. et al. (2018) Piglet weight gain during the first two weeks of lactation influences the immune system development.
    Vet Immunol Immunopathol. 206: 25-34.
  38. Moncada-Saucedo, N.K. et al. (2019) A Bioactive Cartilage Graft of IGF1-Transduced Adipose Mesenchymal Stem Cells Embedded in an Alginate/Bovine Cartilage Matrix Tridimensional Scaffold.
    Stem Cells Int. 2019: 9792369.
  39. Muñoz-Silvestre, A. et al. (2020) Pathogenesis of Intradermal Staphylococcal Infections: Rabbit Experimental Approach to Natural Staphylococcus aureus Skin Infections.
    Am J Pathol. 190 (6): 1188-210.
  40. Park, D.S. et al. (2021) Dynamic changes in blood immune cell composition and function in Holstein and Jersey steers in response to heat stress.
    Cell Stress Chaperones. 26 (4): 705-20.
  41. Grudzien, M. et al. (2021) A newly established canine NK-type cell line and its cytotoxic properties.
    Vet Comp Oncol. 19 (3): 567-77.
  42. Risalde, M.A. et al. (2020) BVDV permissiveness and lack of expression of co-stimulatory molecules on PBMCs from calves pre-infected with BVDV.
    Comp Immunol Microbiol Infect Dis. 68: 101388.
  43. Kolar, Q.K. et al. (2020) Anatomical distribution of respiratory tract leukocyte cell subsets in neonatal calves.
    Vet Immunol Immunopathol. 227: 110090.
  44. Riccardo, F. et al. (2022) Antigen mimicry as an effective strategy to induce CSPG4-targeted immunity in dogs with oral melanoma: a veterinary trial.
    J Immunother Cancer. 10(5):e004007. [Epub ahead of print].
  45. Shiue, S.J. et al. (2022) Arthrospira Enhances Seroclearance in Patients with Chronic Hepatitis B Receiving Nucleos(t)ide Analogue through Modulation of TNF-α/IFN-γ Profile.
    Nutrients. 14 (14)Jul 06 [Epub ahead of print].
  46. Jaensch, S. et al. (2022) Clinicopathologic and immunophenotypic features in dogs with presumptive large granular lymphocyte leukaemia
    Australian Veterinary Journal. 12 Aug [Epub ahead of print].

Further Reading

  1. Simmons, D. L. et al. (1989) Monocyte antigen CD14 is a phospholipid anchored membrane protein.
    Blood. 73:284-9.
  2. Bazil, V. et al. (1986) Biochemical characterization of a soluble form of the 53-kDa monocyte surface antigen.
    Eur J Immunol. 16:1583-9.
  3. Jersmann, H.P. (2005) Time to abandon dogma: CD14 is expressed by non-myeloid lineage cells.
    Immunol Cell Biol. 83:462-7.
  4. Pugin, J. et al. (1994) CD14 is a pattern recognition receptor.
    Immunity.1:509-16.
  5. Dziarski, R. et al. (1998) Binding of bacterial peptidoglycan to CD14.
    J Biol Chem. 273:8680-90.
  6. Piriou-Guzylack, L. (2008) Membrane markers of the immune cells in swine: an update.
    Vet Res. 39: 54.

Flow Cytometry

Immuno-electron Microscopy

RRID
AB_566515
UniProt
P08571
Entrez Gene
CD14
GO Terms
GO:0005886 plasma membrane
GO:0001530 lipopolysaccharide binding
GO:0001847 opsonin receptor activity
GO:0006915 apoptosis
GO:0006909 phagocytosis
GO:0006954 inflammatory response
GO:0008063 Toll signaling pathway
GO:0031225 anchored to membrane
GO:0016019 peptidoglycan receptor activity
GO:0032760 positive regulation of tumor necrosis factor production
GO:0045087 innate immune response
GO:0070891 lipoteichoic acid binding
GO:0071222 cellular response to lipopolysaccharide
GO:0071223 cellular response to lipoteichoic acid
View more products with CD14 specificity

Please Note: All Products are "FOR RESEARCH PURPOSES ONLY"

View all Anti-Human Products