CD16 antibody | G7




Mouse anti pig CD16 immunoprecipitates a protein of ~40 kDa from porcine neutrophils and NK cells (Wierda et al. 1993). Subsequent cloning and characterization of the G7 molecule indicated that G7 was the porcine homologue of Human CD16 (Halloran et al. 1994).
Product Details
- Target Species
- Pig
- Product Form
- Purified IgG conjugated to Fluorescein Isothiocyanate Isomer 1 (FITC) - liquid
- Product Form
- Purified IgG - liquid
- Product Form
- Purified IgG conjugated to R. Phycoerythrin (RPE) - lyophilized
- Reconstitution
- Reconstitute with 1.0 ml distilled water
- Preparation
- Purified IgG prepared by affinity chromatography on Protein A
- Preparation
- Purified IgG prepared by affinity chromatography on Protein A
- Preparation
- Purified IgG prepared by affinity chromatography on Protein A
- Buffer Solution
- Phosphate buffered saline
- Buffer Solution
- Phosphate buffered saline
- Buffer Solution
- Phosphate buffered saline
- Preservative Stabilisers
0.09% Sodium Azide 1% Bovine Serum Albumin - Preservative Stabilisers
- 0.09% Sodium Azide (NaN3)
- Preservative Stabilisers
0.09% Sodium Azide 1% Bovine Serum Albumin 5% Sucrose - Carrier Free
- Yes
- Immunogen
- Porcine peripheral blood leucocytes
- Approx. Protein Concentrations
- IgG concentration 0.1 mg/ml
- Approx. Protein Concentrations
- IgG concentration 1.0 mg/ml
- Fusion Partners
- Spleen cells from immunised Balb/c mice were fused with cells of the mouse P3-X63-Ag8.653 myeloma cell line
Storage Information
- Storage
- Store at +4oC or at -20oC if preferred.
This product should be stored undiluted.
Storage in frost-free freezers is not recommended. This product is photosensitive and should be protected from light.
Avoid repeated freezing and thawing as this may denature the antibody. Should this product contain a precipitate we recommend microcentrifugation before use. - Storage
- Store at +4oC or at -20oC if preferred.
Storage in frost-free freezers is not recommended.
This product should be stored undiluted. Avoid repeated freezing and thawing as this may denature the antibody. Should this product contain a precipitate we recommend microcentrifugation before use. - Storage
- Store at +4oC.
DO NOT FREEZE.
This product should be stored undiluted. This product is photosensitive and should be protected from light. Should this product contain a precipitate we recommend microcentrifugation before use. - Guarantee
- 12 months from date of despatch
- Guarantee
- 12 months from date of despatch
- Guarantee
- 12 months from date of despatch
More Information
- UniProt
- Q28942
- Entrez Gene
- FCGR3B
- GO Terms
- GO:0005886 plasma membrane
- GO:0016021 integral to membrane
- GO:0004872 receptor activity
- GO:0019864 IgG binding
- Regulatory
- For research purposes only
Applications of CD16 antibody
Application Name | Verified | Min Dilution | Max Dilution |
---|---|---|---|
Flow Cytometry | Neat | ||
Flow Cytometry | 1/25 | 1/200 | |
Immunofluorescence | |||
Immunoprecipitation | |||
Flow Cytometry | Neat |
- Flow Cytometry
- Use 10ul of the suggested working dilution to label 106 cells in 100ul.
- Flow Cytometry
- Use 10ul of the suggested working dilution to label 1x106 cells in 100ul.
- Flow Cytometry
- Use 10ul of the suggested working dilution to label 106 cells in 100ul.
Secondary Antibodies Available
Negative Isotype Controls Available
Description | Product Code | Applications | Pack Size | List Price | Quantity |
---|---|---|---|---|---|
Mouse IgG1 Negative Control:FITC | MCA928F | F | 100 Tests |
![]() |
|
Mouse IgG1 Negative Control | MCA928 | F | 100 Tests |
![]() |
|
Mouse IgG1 Negative Control:RPE | MCA928PE | F | 100 Tests |
![]() |
Product Specific References
References for CD16 antibody
-
Dato, M.E. et al. (1992) A triggering structure recognized by G7 monoclonal antibody on porcine lymphocytes and granulocytes.
Cell Immunol. 140 (2): 468-77. -
Wierda, W.G. et al. (1993) Two distinct porcine natural killer lytic trigger molecules as PNK-E/G7 molecular complex.
Cell Immunol. 146 (2): 270-83. -
Halloran, P.J. et al. (1994) Biochemical characterization of the porcine Fc gamma RIII alpha homologue G7.
Cell Immunol. 158 (2): 400-13. -
Devriendt, B. et al. (2010) Targeting of Escherichia coli F4 fimbriae to Fcgamma receptors enhances the maturation of porcine dendritic cells.
Vet Immunol Immunopathol. 135 (3-4): 188-98. -
Inman, C.F. et al. (2010) Dendritic cells interact with CD4 T cells in intestinal mucosa.
J Leukoc Biol. 88 (3): 571-8. -
Terzic, S. et al. (2002) Immunophenotyping of leukocyte subsets in peripheral blood and palatine tonsils of prefattening pigs.
Vet Res Commun. 26: 273 - 83. -
Masure, D. et al. (2013) A Role for Eosinophils in the Intestinal Immunity against Infective Ascaris suum Larvae.
PLoS Negl Trop Dis. 7: e2138. -
Hester, S.N. et al. (2012) Intestinal and systemic immune development and response to vaccination are unaffected by dietary (1,3/1,6)-β-D-glucan supplementation in neonatal piglets.
Clin Vaccine Immunol. 19 (9): 1499-508. -
Kapetanovic, R. et al. (2012) Pig bone marrow-derived macrophages resemble human macrophages in their response to bacterial lipopolysaccharide.
J Immunol. 188: 3382 - 94. -
Gimeno, M. et al. (2011) Cytokine profiles and phenotype regulation of antigen presenting cells by genotype-I porcine reproductive and respiratory syndrome virus isolates.
Vet Res. 42: 9. -
Mussá, T. et al. (2011) Interaction of porcine conventional dendritic cells with swine influenza virus.
Virology 420: 125-34. -
Vincent, I.E. et al. (2003) Dendritic cells harbor infectious porcine circovirus type 2 in the absence of apparent cell modulation or replication of the virus.
J Virol. 77: 13288 - 300. -
Inman, C.F. et al. (2012) Neonatal colonisation expands a specific intestinal antigen-presenting cell subset prior to CD4 T-cell expansion, without altering T-cell repertoire.
PLoS One 7: e33707. -
Sánchez, C. et al. (1999) The porcine 2A10 antigen is homologous to human CD163 and related to macrophage differentiation.
J Immunol. 162 (9): 5230-7. -
Lecours, M.P. et al. (2011) Characterization of porcine dendritic cell response to Streptococcus suis.
Vet Res. 42: 72. -
Inman, C.F. et al. (2010) Rearing environment affects development of the immune system in neonates.
Clin Exp Immunol. 160 (3): 431-9. -
Summerfield, A. et al. (2003) Porcine peripheral blood dendritic cells and natural interferon-producing cells.
Immunology 110: 440-9. -
Mair, K.H. et al. (2012) NKp46 expression discriminates porcine NK cells with different functional properties.
Eur J Immunol. 42: 1261-71. -
Mair, K.H. et al. (2013) Porcine CD8αdim/-NKp46high NK cells are in a highly activated state.
Vet Res. 44: 13. -
Auray, G. et al. (2016) Characterization and Transcriptomic Analysis of Porcine Blood Conventional and Plasmacytoid Dendritic Cells Reveals Striking Species-Specific Differences.
J Immunol. Nov 11. pii: 1600672. [Epub ahead of print] -
Kyrova, K. et al. (2014) The response of porcine monocyte derived macrophages and dendritic cells to Salmonella typhimurium and lipopolysaccharide.
BMC Vet Res. 10: 244. -
Suzuki, S. et al. (2016) Generation and characterization of RAG2 knockout pigs as animal model for severe combined immunodeficiency.
Vet Immunol Immunopathol. 178: 37-49. -
Waide, E.H. et al. (2015) Not All SCID Pigs Are Created Equally: Two Independent Mutations in the Artemis Gene Cause SCID in Pigs.
J Immunol. 195 (7): 3171-9. -
Loss, H. et al. (2018) Effects of a pathogenic ETEC strain and a probiotic Enterococcus faecium strain on the inflammasome response in porcine dendritic cells.
Vet Immunol Immunopathol. 203: 78-87. -
LeLuduec, J.B. et al. (2016) Intradermal vaccination with un-adjuvanted sub-unit vaccines triggers skin innate immunity and confers protective respiratory immunity in domestic swine.
Vaccine. 34 (7): 914-22. -
Ferret-Bernard, S. et al. (2020) Maternal Supplementation of Food Ingredient (Prebiotic) or Food Contaminant (Mycotoxin) Influences Mucosal Immune System in Piglets.
Nutrients. 12 (7): 2115.
Further Reading
-
Piriou-Guzylack, L. (2008) Membrane markers of the immune cells in swine: an update.
Vet Res. 39: 54. -
Gerner W et al. (2015) Phenotypic and functional differentiation of porcine αβ T cells: current knowledge and available tools.
Mol Immunol. 66 (1): 3-13.
Fluorescent Spectraviewer
Watch the Tool Tutorial Video ▸
How to Use the Spectraviewer?
Watch the Tool Tutorial Video ▸
- Start by selecting the application you are interested in, with the option to select an instrument from the drop down menu or create a customized instrument
- Select the fluorophores or fluorescent proteins you want to include in your panel to check compatibility
- Select the lasers and filters you wish to include
- Select combined or multi-laser view to visualize the spectra