CD21 antibody | CA2.1D6

100% Secure


Mouse anti Canine CD21:Alexa Fluor® 647

Mouse anti Canine CD21

Mouse anti Canine CD21:RPE

Product Type
Monoclonal Antibody
Clone
CA2.1D6
Isotype
IgG1
Product CodeApplicationsDatasheetMSDSPack SizeList PriceQuantity
MCA1781A647 F 100 Tests/1ml
MCA1781R C* F IP 0.1 mg
MCA1781PE F* 100 Tests
Mouse anti Canine CD21 antibody, clone CA2.1D6 recognizes canine CD21, also known as Complement receptor type 2. CD21 is a cell surface antigen expressed by canine B lymphocytes.

The antigen recognised may be the canine homologue of human CD21, but this has not been fully confirmed.

Mouse anti Canine CD21 antibody , clone CA2.1D6 also recognizes the CD21 antigen in Felids. Expression in cats is analogous to that seen in dogs with strong expression on lymphocytes, in a manner mutually exclusive with expression of CD4 or CD8. Mouse anti Canine CD21 antibody, clone CA2.1D6 immunoprecipitates a ~145 kDa protein from feline lymphocytes, similar to the protein immunoprecipitated by the antibody from canine lymphocytes (Dean et al. 1996).

Product Details

Target Species
Dog
Species Cross-Reactivity
Target SpeciesCross Reactivity
Horse
Cat
Raccoon
N.B. Antibody reactivity and working conditions may vary between species.
Product Form
Purified IgG conjugated to Alexa Fluor® 647 - liquid
Product Form
Purified IgG - liquid
Product Form
Purified IgG conjugated to R. Phycoerythrin (RPE) - lyophilized
Reconstitution
Reconstitute with 1 ml distilled water
Preparation
Purified IgG prepared by affinity chromatography on Protein A from tissue culture supernatant
Preparation
Purified IgG prepared by affinity chromatography on Protein A
Preparation
Purified IgG prepared by affinity chromatography on Protein G
Buffer Solution
Phosphate buffered saline
Buffer Solution
Phosphate buffered saline
Buffer Solution
Phosphate buffered saline
Preservative Stabilisers
0.09% Sodium Azide (NaN3)
1% Bovine Serum Albumin
Preservative Stabilisers
0.09%Sodium Azide
Preservative Stabilisers
0.09%Sodium Azide
1%Bovine Serum Albumin
Approx. Protein Concentrations
IgG concentration 0.05mg/ml
Approx. Protein Concentrations
IgG concentration 1.0 mg/ml

Storage Information

Storage
Store at +4oC or at -20oC if preferred.
Storage in frost-free freezers is not recommended.
This product should be stored undiluted. This product is photosensitive and should be protected from light.
Avoid repeated freezing and thawing as this may denature the antibody. Should this product contain a precipitate we recommend microcentrifugation before use.
Storage
Store at +4oC or at -20oC if preferred.

This product should be stored undiluted.

Storage in frost free freezers is not recommended. Avoid repeated freezing and thawing as this may denature the antibody. Should this product contain a precipitate we recommend microcentrifugation before use.
Storage
Prior to reconstitution store at +4oC. Following reconstitution store at +4oC.

DO NOT FREEZE.

This product should be stored undiluted. This product is photosensitive and should be protected from light. Should this product contain a precipitate we recommend microcentrifugation before use.
Shelf Life
18 months from date of despatch.
Shelf Life
18 months from date of despatch.
Shelf Life
12 months from date of reconstitution.

More Information

Acknowledgements
This product is provided under an intellectual property licence from Life Technologies Corporation. The transfer of this product is contingent on the buyer using the purchase product solely in research, excluding contract research or any fee for service research, and the buyer must not sell or otherwise transfer this product or its components for (a) diagnostic, therapeutic or prophylactic purposes; (b) testing, analysis or screening services, or information in return for compensation on a per-test basis; (c) manufacturing or quality assurance or quality control, or (d) resale, whether or not resold for use in research. For information on purchasing a license to this product for purposes other than as described above, contact Life Technologies Corporation, 5791 Van Allen Way, Carlsbad CA 92008 USA or outlicensing@thermofisher.com
Regulatory
For research purposes only

Applications of CD21 antibody

This product has been reported to work in the following applications. This information is derived from testing within our laboratories, peer-reviewed publications or personal communications from the originators. Please refer to references indicated for further information. For general protocol recommendations, please visit the antibody protocols page.
Application Name Verified Min Dilution Max Dilution
Flow Cytometry Neat 1/10
Flow Cytometry 1/100
Immunohistology - Frozen 1
Immunohistology - Paraffin
Immunoprecipitation
Flow Cytometry 1 Neat
  1. 1The epitope recognised by this antibody is reported to be sensitive to formaldehyde fixation and tissue processing. Bio-Rad recommends the use of acetone fixation for frozen sections.
  1. 1 N.B. MCA1781PE should NOT be used with MCA1774F (mouse anti canine CD3), in dual colour flow cytometry, due to non-specific interactions between the two reagents.
Where this antibody has not been tested for use in a particular technique this does not necessarily exclude its use in such procedures. Suggested working dilutions are given as a guide only. It is recommended that the user titrates the antibody for use in their own system using appropriate negative/positive controls.
Where this antibody has not been tested for use in a particular technique this does not necessarily exclude its use in such procedures. Suggested working dilutions are given as a guide only. It is recommended that the user titrates the antibody for use in their own system using appropriate negative/positive controls.
Where this antibody has not been tested for use in a particular technique this does not necessarily exclude its use in such procedures. Suggested working dilutions are given as a guide only. It is recommended that the user titrates the antibody for use in their own system using appropriate negative/positive controls.
Flow Cytometry
Use 10ul of the suggested working dilution to label 106 cells or 100ul whole blood.
Flow Cytometry
Use 10ul of the suggested working dilution to label 106 cells or 100ul whole blood.
Flow Cytometry
Use 10ul of the suggested working dilution to label 106 cells or cells or 100ul whole blood.

Secondary Antibodies Available

Description Product Code Pack Size Applications List Price Quantity
Human anti Mouse IgG1:HRP HCA036P 0.1 mg E
Goat anti Mouse IgG (H/L):Alk. Phos. (Multi Species Adsorbed) STAR117A 0.5 mg E WB
Goat anti Mouse IgG (H/L):DyLight®488 (Multi Species Adsorbed) STAR117D488GA 0.1 mg F IF
Goat anti Mouse IgG (H/L):DyLight®549 (Multi Species Adsorbed) STAR117D549GA 0.1 mg F IF WB
Goat anti Mouse IgG (H/L):DyLight®649 (Multi Species Adsorbed) STAR117D649GA 0.1 mg F IF
Goat anti Mouse IgG (H/L):DyLight®680 (Multi Species Adsorbed) STAR117D680GA 0.1 mg F WB
Goat anti Mouse IgG (H/L):DyLight®800 (Multi Species Adsorbed) STAR117D800GA 0.1 mg F IF WB
Goat anti Mouse IgG (H/L):FITC (Multi Species Adsorbed) STAR117F 0.5 mg F
Goat anti Mouse IgG (H/L):HRP (Multi Species Adsorbed) STAR117P 0.5 mg E WB
Goat anti Mouse IgG (Fc):FITC STAR120F 1 mg C F
Goat anti Mouse IgG (Fc):HRP STAR120P 1 mg E WB
Rabbit F(ab')2 anti Mouse IgG:RPE STAR12A 1 ml F
Rabbit F(ab')2 anti Mouse IgG:HRP (Human Adsorbed) STAR13B 1 mg C E P RE WB
Goat anti Mouse IgG:FITC (Rat Adsorbed) STAR70 0.5 mg F
Goat anti Mouse IgG:RPE (Rat Adsorbed) STAR76 1 ml F
Goat anti Mouse IgG:HRP (Rat Adsorbed) STAR77 0.5 mg C E P
Goat anti Mouse IgG/A/M:Alk. Phos. STAR87A 1 mg C E WB
Goat anti Mouse IgG/A/M:HRP (Human Adsorbed) STAR87P 1 mg E
Rabbit F(ab')2 anti Mouse IgG:Dylight®800 STAR8D800GA 0.1 mg F IF WB
Rabbit F(ab')2 anti Mouse IgG:FITC STAR9B 1 mg F

Negative Isotype Controls Available

Description Product Code Pack Size Applications List Price Quantity
Mouse IgG1 Negative Control:Alexa Fluor® 647 MCA928A647 100 Tests/1ml F
Mouse IgG1 Negative Control MCA928 100 Tests F
Mouse IgG1 Negative Control:RPE MCA928PE 100 Tests F

Application Based External Images

Flow Cytometry

Immunohistology - Frozen

Product Specific References

References for CD21 antibody

  1. Cobbold, S. & Metcalfe, S. (1994) Monoclonal antibodies that define canine homologues of human CD antigens: summary of the First International Canine Leukocyte Antigen Workshop (CLAW).
    Tissue Antigens. 43 (3): 137-54.
  2. Brodersen, R. et al. (1998) Analysis of the immunological cross reactivities of 213 well characterized monoclonal antibodies with specificities against various leucocyte surface antigens of human and 11 animal species.
    Vet Immunol Immunopathol. 64 (1): 1-13.
  3. Dean, G.A. et al. (1996) Proviral burden and infection kinetics of feline immunodeficiency virus in lymphocyte subsets of blood and lymph node.
    J Virol. 70 (8): 5165-9.
  4. Faldyna, M. et al. (2004) Lymphocyte subsets in synovial fluid from clinically healthy joints of dogs.
    Acta Vet. Brno 73: 73-8.
  5. Bund, D. et al. (2010) Canine-DCs using different serum-free methods as an approach to provide an animal-model for immunotherapeutic strategies.
    Cell Immunol. 263: 88-98.
  6. Huang, Y.C. et al. (2008) CD5-low expression lymphocytes in canine peripheral blood show characteristics of natural killer cells.
    J Leukoc Biol. 84: 1501-10.
  7. Mortarino, M. et al. (2009) ZAP-70 and Syk expression in canine lymphoid cells and preliminary results on leukaemia cases.
    Vet Immunol Immunopathol. 128: 395-401.
  8. Reggeti, F. et al. (2008) CD134 and CXCR4 expression corresponds to feline immunodeficiency virus infection of lymphocytes, macrophages and dendritic cells.
    J Gen Virol. 89: 277-87.
  9. Wang, Y.S. et al. (2007) Characterization of canine monocyte-derived dendritic cells with phenotypic and functional differentiation.
    Can J Vet Res. 71: 165-74.
  10. Lankford, S. et al. (2008) Cloning of feline FOXP3 and detection of expression in CD4+CD25+ regulatory T cells.
    Vet Immunol Immunopathol. 122: 159-66.
  11. Araujo, M.S. et al. (2011) Immunological changes in canine peripheral blood leukocytes triggered by immunization with first or second generation vaccines against canine visceral leishmaniasis.
    Vet Immunol Immunopathol. 141: 64-75.
  12. Estrela-Lima, A. et al. (2010) Immunophenotypic features of tumor infiltrating lymphocytes from mammary carcinomas in female dogs associated with prognostic factors and survival rates.
    BMC Cancer. 10: 256.
  13. Horn, P.A. et al. (2004) Efficient lentiviral gene transfer to canine repopulating cells using an overnight transduction protocol.
    Blood. 103: 3710-6.
  14. Hsiao, Y.W. et al. (2004) Tumor-infiltrating lymphocyte secretion of IL-6 antagonizes tumor-derived TGF-beta 1 and restores the lymphokine-activated killing activity.
    J Immunol. 172: 1508-14.
  15. Jubala, C.M. et al. (2005) CD20 expression in normal canine B cells and in canine non-Hodgkin lymphoma.
    Vet Pathol. 42: 468-76.
  16. Gaurnier-Hausser, A. et al. (2011) NEMO-Binding Domain Peptide Inhibits Constitutive NF-{kappa}B Activity and Reduces Tumor Burden in a Canine Model of Relapsed, Refractory Diffuse Large B-Cell Lymphoma.
    Clin Cancer Res. 17: 4661-71.
  17. Maiolini, A. et al. (2012) Toll-like receptors 4 and 9 are responsible for the maintenance of the inflammatory reaction in canine steroid-responsive meningitis-arteritis, a large animal model for neutrophilic meningitis.
    J Neuroinflammation. 9: 226.
  18. Cave, N.J. et al. (2012) Systemic effects of periodontal disease in cats.
    Vet Q. 32: 131-44.
  19. Yuasa, K. et al. (2007) Injection of a recombinant AAV serotype 2 into canine skeletal muscles evokes strong immune responses against transgene products.
    Gene Ther. 14: 1249-60.
  20. Aresu, L. et al. (2014) VEGF and MMP-9: biomarkers for canine lymphoma.
    Vet Comp Oncol. 12: 29-36.
  21. Heinrich, F. et al. (2015) Immunophenotyping of immune cell populations in the raccoon (Procyon lotor)
    Vet Immunol Immunopathol. Nov 3 [Epub ahead of print]
  22. Gelain, M.E. et al. (2014) CD44 in canine leukemia: analysis of mRNA and protein expression in peripheral blood.
    Vet Immunol Immunopathol. 159 (1-2): 91-6.
  23. Michael, H.T. et al. (2013) Isolation and characterization of canine natural killer cells.
    Vet Immunol Immunopathol. 155 (3): 211-7.
  24. Mitchell, L. et al. (2012) Induction of remission results in spontaneous enhancement of anti-tumor cytotoxic T-lymphocyte activity in dogs with B cell lymphoma.
    Vet Immunol Immunopathol. 145 (3-4): 597-603.
  25. Bonnefont-Rebeix, C. et al. (2016) Characterization of a novel canine T-cell line established from a spontaneously occurring aggressive T-cell lymphoma with large granular cell morphology.
    Immunobiology. 221 (1): 12-22.
  26. Izci C et al. (2015) Clinical and light microscopic studies of the conjunctival tissues of dogs with bilateral keratoconjunctivitis sicca before and after treatment with topical 2% cyclosporine.
    Biotech Histochem. 90 (3): 223-30.
  27. Ledbetter, E.C. et al. (2016) Clinical and immunological assessment of therapeutic immunization with a subunit vaccine for recurrent ocular canine herpesvirus-1 infection in dogs.
    Vet Microbiol. 197: 102-10.
  28. Lin, S-C. et al. (2014) Immune Characterization of Peripheral Blood Mononuclear cells of the Dogs Restored from Innoculation of Canine Transmissible Venereal Tumor Cells.
    Tai Vet J. 40 (04): 181-90.
  29. Herry, V. et al. (2017) Local immunization impacts the response of dairy cows to Escherichia coli mastitis.
    Sci Rep. 7 (1): 3441.
  30. Gibbons, N. et al. (2017) Phenotypic heterogeneity of peripheral monocytes in healthy dogs
    Vet Immunol Immunopathol. 190: 26-30.
  31. Martini, V. et al. (2017) Flow cytometry for feline lymphoma: a retrospective study regarding pre-analytical factors possibly affecting the quality of samples.
    J Feline Med Surg. : 1098612X17717175.
  32. Declue, A.E. et al. (2018) Identification of immunologic and clinical characteristics that predict inflammatory response to C. Novyi-NT bacteriolytic immunotherapy.
    BMC Vet Res. 14 (1): 119.
  33. DaSilvaA, V.A. et al. (2018) Morphophysiological changes in the splenic extracellular matrix of Leishmania infantum-naturally infected dogs is associated with alterations in lymphoid niches and the CD4+ T cell frequency in spleens.
    PLoS Negl Trop Dis. 12 (4): e0006445.
  34. Schmidli, M.R. et al. (2018) Inflammatory pattern of the infrapatellar fat pad in dogs with canine cruciate ligament disease.
    BMC Vet Res. 14 (1): 161.