CD90 antibody | YKIX337.217

100% Secure


Rat anti Dog CD90

Product Type
Monoclonal Antibody
Clone
YKIX337.217
Isotype
IgG2b
Product CodeApplicationsDatasheetMSDSPack SizeList PriceQuantity
MCA1036GA F IP 0.1 mg
MCA1036G F IP 0.25 mg
Rat anti Dog CD90, clone YKIX337.217 recognizes the canine Thy-1 cell surface antigen, also known as CD90. CD90 is a 20-30 kDa glycoprotein expressed by peripheral T lymphocytes, monocytes, thymocytes and vascular endothelium in dogs.

Rat anti Dog CD90, clone YKIX337.217 has been demonstrated to deplete T cells when administered in vivo (Watson et al. 1993), and to block Con A driven T cell proliferation in vitro.

Rat anti Dog CD90, clone YKIX337.217 is a useful clone for the immunophenotyping of cells and discrimination between a wide variety of lymphoproliferative disorders in dogs (Adam et al. 2009).

Product Details

Target Species
Dog
Product Form
Purified IgG - liquid
Preparation
Purified IgG prepared by affinity chromatography on Protein G from tissue culture supernatant
Buffer Solution
Phosphate buffered saline
Preservative Stabilisers
0.09%Sodium Azide
Immunogen
Con A stimulated canine T cells.
Approx. Protein Concentrations
IgG concentration 1.0 mg/ml
Fusion Partners
Spleen cells from immunised DA rats were fused with cells of the rat Y3/Ag1.2.3 myeloma cell line.

Storage Information

Storage
Store at +4oC or at -20oC if preferred.

This product should be stored undiluted. Avoid repeated freezing and thawing as this may denature the antibody. Should this product contain a precipitate we recommend microcentrifugation before use.
Shelf Life
18 months from date of despatch.

More Information

Regulatory
For research purposes only

Applications of CD90 antibody

This product has been reported to work in the following applications. This information is derived from testing within our laboratories, peer-reviewed publications or personal communications from the originators. Please refer to references indicated for further information. For general protocol recommendations, please visit the antibody protocols page.
Application Name Verified Min Dilution Max Dilution
Flow Cytometry 1/50
Immunoprecipitation
Where this antibody has not been tested for use in a particular technique this does not necessarily exclude its use in such procedures. Suggested working dilutions are given as a guide only. It is recommended that the user titrates the antibody for use in their own system using appropriate negative/positive controls.
Flow Cytometry
Use 10ul of the suggested working dilution to label 106 cells in 100ul.

Secondary Antibodies Available

Description Product Code Pack Size Applications List Price Quantity
Goat anti Rat IgG:Alk. Phos. (Mouse Adsorbed) STAR131A 1 ml C E P WB
Goat anti Rat IgG:Biotin (Mouse Adsorbed) STAR131B 0.5 mg C E IF P WB
Rabbit F(ab')2 anti Rat IgG:Dylight®800 STAR16D800GA 0.1 mg F IF WB
Rabbit F(ab')2 anti Rat IgG:FITC STAR17B 1 mg F
Rabbit F(ab')2 anti Rat IgG:HRP STAR21B 1 mg C E P RE
Goat F(ab')2 anti Rat IgG:FITC (Mouse Adsorbed) STAR69 0.5 ml F
Goat anti Rat IgG:DyLight®649 (Mouse Adsorbed) STAR71D649GA 0.1 mg F IF
Goat anti Rat IgG:Dylight®800 (Mouse Adsorbed) STAR71D800GA 0.1 mg F IF WB
Goat anti Rat IgG:HRP (Mouse Adsorbed) STAR72 0.5 mg C E P
Goat F(ab')2 anti Rat IgG:RPE (Mouse Adsorbed) STAR73 0.5 ml F

Negative Isotype Controls Available

Description Product Code Pack Size Applications List Price Quantity
Rat IgG2b Negative Control MCA6006GA 0.1 mg F

Application Based External Images

Immunohistology - Frozen

Product Specific References

References for CD90 antibody

  1. Cobbold, S. & Metcalfe, S. (1994) Monoclonal antibodies that define canine homologues of human CD antigens: summary of the First International Canine Leukocyte Antigen Workshop (CLAW).
    Tissue Antigens. 43 (3): 137-54.
  2. Carneiro, C.M. et al. (2007) Differential impact of metacyclic and blood trypomastigotes on parasitological, serological and phenotypic features triggered during acute Trypanosoma cruzi infection in dogs.
    Acta Trop. 101: 120-9.
  3. Kang, J.W. et al. (2008) Soluble factors-mediated immunomodulatory effects of canine adipose tissue-derived mesenchymal stem cells.
    Stem Cells Dev. 17: 681-93.
  4. Sanchez, M.A. et al. (2004) Organ-specific immunity in canine visceral leishmaniasis: analysis of symptomatic and asymptomatic dogs naturally infected with Leishmania chagasi.
    Am J Trop Med Hyg. 70: 618-24.
  5. Giunchetti, R.C. et al. (2008) Histopathology, parasite density and cell phenotypes of the popliteal lymph node in canine visceral leishmaniasis.
    Vet Immunol Immunopathol. 121: 23-33.
  6. Reis, A.B. (2005) Establishment of a microplate assay for flow cytometric assessment and it is use for the evaluation of age-related phenotypic changes in canine whole blood leukocytes.
    Vet Immunol Immunopathol. 103: 173-85.
  7. Bearden, R.N. et al. (2017) In-vitro characterization of canine multipotent stromal cells isolated from synovium, bone marrow, and adipose tissue: a donor-matched comparative study.
    Stem Cell Res Ther. 8 (1): 218.
  8. Saulnier, N. et al. (2016) Canine Placenta: A promising potential source of highly proliferative and immunomodulatory Mesenchymal Stromal Cells?
    Veterinary Immunology and Immunopathology. Feb 11 [Epub ahead of print]
  9. Nishimura, T. et al. (2017) Feeder-independent canine induced pluripotent stem cells maintained under serum-free conditions.
    Mol Reprod Dev. Feb 27. [Epub ahead of print]
  10. Lee, J. et al. (2016) Chondrogenic potential and anti-senescence effect of hypoxia on canine adipose mesenchymal stem cells.
    Vet Res Commun. 40 (1): 1-10.
  11. Rathore, K. & Cekanova, M. (2015) Effects of environmental carcinogen benzo(a)pyrene on canine adipose-derived mesenchymal stem cells.
    Res Vet Sci. 103: 34-43.
  12. Trindade, A.B. et al. (2017) Mesenchymal-like stem cells in canine ovary show high differentiation potential.
    Cell Prolif. 50 (6)Oct 08 [Epub ahead of print].

Further Reading

  1. Watson, C.J. et al. (1993) CD4 and CD8 monoclonal antibody therapy: strategies to prolong renal allograft survival in the dog.
    Br J Surg. 80: 1389-92.