CD4 antibody | CC8













Mouse anti Bovine CD4:Alexa Fluor® 647
Mouse anti Bovine CD4:FITC
Mouse anti Bovine CD4
Mouse anti Bovine CD4:RPE
- Product Type
- Monoclonal Antibody
- Clone
- CC8
- Isotype
- IgG2a
Product Code | Applications | Datasheet | MSDS | Pack Size | List Price | Quantity |
---|---|---|---|---|---|---|
MCA1653A647 | F | 100 Tests/1ml | ||||
MCA1653F | F | 0.1 mg | ||||
MCA1653GA | C F IP | 0.1 mg | ||||
MCA1653PE | F | 100 Tests |
Mouse anti Bovine CD4 antibody, clone CC8 recognizes bovine CD4, the homolog of human CD4 and immunoprecipitates a ~50 kDa molecule. The phenotype, tissue distribution and function of T-cells expressing the bovine CD4 antigen are similar to those in other species. However, expression on macrophages has not yet been detected. Clone CC8 has been reported as being suitable for use on formalin dichromate (FD5) fixed paraffin embedded tissue with amplification and antigen retrieval techniques (Eskra et al. 1991).
Product Details
- Target Species
- Bovine
- Product Form
- Purified IgG conjugated to Alexa Fluor® 647 - liquid
- Product Form
- Purified IgG conjugated to Fluorescein Isothiocyanate Isomer 1 (FITC) - liquid
- Product Form
- Purified IgG - liquid
- Product Form
- Purified IgG conjugated to R. Phycoerythrin (RPE) - lyophilized
- Reconstitution
- Reconstitute with 1 ml distilled water
- Preparation
- Purified IgG prepared by affinity chromatography on Protein A from tissue culture supernatant
- Preparation
- Purified IgG prepared by affinity chromatography on Protein A from tissue culture supernatant
- Preparation
- Purified IgG prepared by affinity chromatography on Protein A from tissue culture supernatant
- Preparation
- Purified IgG prepared by affinity chromatography on Protein A from tissue culture supernatant
- Buffer Solution
- Phosphate buffered saline
- Buffer Solution
- Phosphate buffered saline
- Buffer Solution
- Phosphate buffered saline
- Buffer Solution
- Phosphate buffered saline
- Preservative Stabilisers
0.09% Sodium Azide 1% Bovine Serum Albumin - Preservative Stabilisers
0.09% Sodium Azide 1% Bovine Serum Albumin - Preservative Stabilisers
0.09% Sodium Azide - Preservative Stabilisers
- 0.09% Sodium Azide (NaN3)
1% Bovine Serum Albumin
5% Sucrose - Carrier Free
- Yes
- Immunogen
- Bovine lymphocytes.
- Approx. Protein Concentrations
- IgG concentration 0.05 mg/ml
- Approx. Protein Concentrations
- IgG concentration 0.1 mg/ml
- Approx. Protein Concentrations
- IgG concentration 1.0 mg/ml
- Fusion Partners
- Spleen cells from an immunized mouse were fused with cells of the mouse NS1 myeloma cell line.
Storage Information
- Storage
- Store at +4oC or at -20oC if preferred.
This product should be stored undiluted.
Storage in frost free freezers is not recommended. This product is photosensitive and should be protected from light.
Avoid repeated freezing and thawing as this may denature the antibody. Should this product contain a precipitate we recommend microcentrifugation before use. - Storage
- Store at +4oC or at -20oC if preferred.
This product should be stored undiluted.
Storage in frost free freezers is not recommended. This product is photosensitive and should be protected from light.
Avoid repeated freezing and thawing as this may denature the antibody. Should this product contain a precipitate we recommend microcentrifugation before use. - Storage
- Store at +4oC or at -20oC if preferred.
This product should be stored undiluted.
Storage in frost-free freezers is not recommended. Avoid repeated freezing and thawing as this may denature the antibody. Should this product contain a precipitate we recommend microcentrifugation before use. - Storage
- Store at +4oC.
DO NOT FREEZE
This product should be stored undiluted. This product is photosensitive and should be protected from light. Should this product contain a precipitate we recommend microcentrifugation before use. - Shelf Life
- 18 months from date of despatch.
- Shelf Life
- 18 months from date of despatch.
- Shelf Life
- 18 months from date of despatch.
- Shelf Life
- 12 months from date of reconstitution.
More Information
- UniProt
- A7YY52 Related reagents
- Acknowledgements
- This product is provided under an intellectual property licence from Life Technologies Corporation. The transfer of this product is contingent on the buyer using the purchase product solely in research, excluding contract research or any fee for service research, and the buyer must not sell or otherwise transfer this product or its components for (a) diagnostic, therapeutic or prophylactic purposes; (b) testing, analysis or screening services, or information in return for compensation on a per-test basis; (c) manufacturing or quality assurance or quality control, or (d) resale, whether or not resold for use in research. For information on purchasing a license to this product for purposes other than as described above, contact Life Technologies Corporation, 5791 Van Allen Way, Carlsbad CA 92008 USA or outlicensing@thermofisher.com
- Regulatory
- For research purposes only
Applications of CD4 antibody
Application Name | Verified | Min Dilution | Max Dilution |
---|---|---|---|
Flow Cytometry | Neat | 1/10 | |
Flow Cytometry | Neat | ||
Flow Cytometry | 1/100 | 1/200 | |
Immunohistology - Frozen | |||
Immunoprecipitation | |||
Flow Cytometry | Neat |
Where this antibody has not been tested for use in a particular technique this does not necessarily exclude its use in such procedures. Suggested working dilutions are given as a guide only. It is recommended that the user titrates the antibody for use in their own system using appropriate negative/positive controls.
Where this antibody has not been tested for use in a particular technique this does not necessarily exclude its use in such procedures. Suggested working dilutions are given as a guide only. It is recommended that the user titrates the antibody for use in their own system using appropriate negative/positive controls.
Where this antibody has not been tested for use in a particular technique this does not necessarily exclude its use in such procedures. Suggested working dilutions are given as a guide only. It is recommended that the user titrates the antibody for use in their own system using appropriate negative/positive controls.
Where this antibody has not been tested for use in a particular technique this does not necessarily exclude its use in such procedures. Suggested working dilutions are given as a guide only. It is recommended that the user titrates the antibody for use in their own system using appropriate negative/positive controls.
- Flow Cytometry
- Use 10ul of the suggested working dilution to label 106 cells in 100ul.
- Flow Cytometry
- Use 10ul of the suggested working dilution to label 106 cells in 100ul.
- Flow Cytometry
- Use 10ul of the suggested working dilution to label 106 cells in 100ul.
- Flow Cytometry
- Use 10ul of the suggested working dilution to label 106 cells in 100ul.
Copyright © 2019 Bio-Rad Antibodies (formerly AbD Serotec)
Secondary Antibodies Available
Negative Isotype Controls Available
Description | Product Code | Pack Size | Applications | List Price | Quantity |
---|---|---|---|---|---|
Mouse IgG2a Negative Control:Alexa Fluor® 647 | MCA929A647 | 100 Tests/1ml | F | ||
Mouse IgG2a Negative Control:FITC | MCA929F | 100 Tests | F | ||
Mouse IgG2a Negative Control | MCA929 | 100 Tests | F | ||
Mouse IgG2a Negative Control:RPE | MCA929PE | 100 Tests | F |
Product Specific References
References for CD4 antibody
-
Bensaid, A. & Hadam, M. (1991) Individual antigens of cattle. Bovine CD4 (BoCD4).
Vet Immunol Immunopathol. 27 (1-3): 51-4. -
Eskra, L. et al. (1991) Effect of monoclonal antibodies on in vitro function of T-cell subsets.
Vet Immunol Immunopathol. 27 (1-3): 215-22. -
Howard, C.J. et al. (1991) Summary of workshop findings for leukocyte antigens of cattle.
Vet Immunol Immunopathol. 27 (1-3): 21-7. -
Gutierrez, M. et al. (1999) The detection of CD2+, CD4+, CD8+, and WC1+ T lymphocytes, B cells and macrophages in fixed and paraffin embedded bovine tissue using a range of antigen recovery and signal amplification techniques.
Vet Immunol Immunopathol. 71 (3-4): 321-34. -
Sidders, B. et al. (2008) Screening of highly expressed mycobacterial genes identifies Rv3615c as a useful differential diagnostic antigen for the Mycobacterium tuberculosis complex.
Infect Immun. 76: 3932-9. -
Brackenbury, L.S. et al. (2005) Identification of a cell population that produces alpha/beta interferon in vitro and in vivo in response to noncytopathic bovine viral diarrhea virus.
J Virol. 79: 7738-44. -
Buddle, B.M. et al. (2003) Revaccination of neonatal calves with Mycobacterium bovis BCG reduces the level of protection against bovine tuberculosis induced by a single vaccination.
Infect Immun. 71: 6411-9. -
Gerner, W. et al. (2009) Identification of major histocompatibility complex restriction and anchor residues of foot-and-mouth disease virus-derived bovine T-cell epitopes.
J Virol. 83: 4039-50. -
Harris, J. et al. (2002) Expression of caveolin by bovine lymphocytes and antigen-presenting cells
Immunology. 105: 190-5. -
Lynch, E.M. et al. (2010) Effect of abrupt weaning at housing on leukocyte distribution, functional activity of neutrophils, and acute phase protein response of beef calves.
BMC Vet Res. 6: 39. -
Hu, X.D. et al. (2009) Immunotherapy with combined DNA vaccines is an effective treatment for M. bovis infection in cattle
Vaccine. 27: 1317-22. -
Coad, M. et al. (2010) Repeat tuberculin skin testing leads to desensitisation in naturally infected tuberculous cattle which is associated with elevated interleukin-10 and decreased interleukin-1 beta responses.
Vet Res. 41: 14. -
Whelan, A.O. et al. (2011) Development of an Antibody to Bovine IL-2 Reveals Multifunctional CD4 T(EM) Cells in Cattle Naturally Infected with Bovine Tuberculosis.
PLoS One. 6: e29194. -
Wernike, K. et al. (2013) Oral exposure, reinfection and cellular immunity to Schmallenberg virus in cattle.
Vet Microbiol. pii: S0378-1135(13)00092-8. -
Kiku, Y. et al. (2010) Decrease in bovine CD14 positive cells in colostrum is associated with the incidence of mastitis after calving.
Vet Res Commun. 34: 197-203. -
Dacal,. V. et al. (2013) Immunohistochemical characterization of inflammatory cells in the skin of cattle undergoing repeated infestations with Hypoderma lineatum (Diptera: Oestridae) larvae.
J Comp Pathol. 145: 282-8. -
Oh, Y. et al. (2012) Interferon-γ induced by in vitro re-stimulation of CD4+ T-cells correlates with in vivo FMD vaccine induced protection of cattle against disease and persistent infection.
PLoS One. 7: e44365. -
Hine, B.C. et al. (2012) Analysis of leukocyte populations in Canadian Holsteins classified as high or low immune responders for antibody- or cell-mediated immune response.
Can J Vet Res. 76: 149-56. -
Aranday-Cortes, E. et al. (2012) Transcriptional profiling of disease-induced host responses in bovine tuberculosis and the identification of potential diagnostic biomarkers.
PLoS One. 7: e30626. -
Tenaya, I.W. et al. (2012) Flow cytometric analysis of lymphocyte subset kinetics in Bali cattle experimentally infected with Jembrana disease virus.
Vet Immunol Immunopathol. 149: 167-76. -
Blunt, L. et al. (2015) Phenotypic characterization of bovine memory cells responding to mycobacteria in IFN&gama; enzyme linked immunospot assays.
Vaccine. 33 (51): 7276-82. -
Brodzki, P. et al. (2014) Phenotyping of leukocytes and granulocyte and monocyte phagocytic activity in the peripheral blood and uterus of cows with endometritis.
Theriogenology. 82 (3): 403-10. -
Grit, G.H. et al. (2014) Evaluation of cellular and humoral systemic immune response against Giardia duodenalis infection in cattle.
Vet Parasitol. 202 (3-4): 145-55. -
Metcalfe, H.J. et al. (2016) Protection associated with a TB vaccine is linked to increased frequency of Ag85A-specific CD4(+) T cells but no increase in avidity for Ag85A.
Vaccine. 34 (38): 4520-5. -
Sun, F. et al. (2016) Regulation of Nutritional Metabolism in Transition Dairy Cows: Energy Homeostasis and Health in Response to Post-Ruminal Choline and Methionine.
PLoS One. 11 (8): e0160659. -
Diaz-San Segundo, F. et al. (2016) Combination of Adt-O1Manisa and Ad5-boIFNλ3 induces early protective immunity against foot-and-mouth disease in cattle.
Virology. 499: 340-9. -
Okagawa, T. et al. (2016) Cooperation of PD-1 and LAG-3 Contributes to T-Cell Exhaustion in Anaplasma marginale-Infected Cattle.
Infect Immun. 84 (10): 2779-90. -
Kruger, E.F. et al. (2003) Bovine monocytes induce immunoglobulin production in peripheral blood B lymphocytes.
Dev Comp Immunol. 27 (10): 889-97. -
Wattegedera, S.R. et al. (2017) Enhancing the toolbox to study IL-17A in cattle and sheep.
Vet Res. 48 (1): 20. -
Herry, V. et al. (2017) Local immunization impacts the response of dairy cows to Escherichia coli mastitis.
Sci Rep. 7 (1): 3441. -
Novak, B. et al. (2018) Bovine Peripheral Blood Mononuclear Cells Are More Sensitive to Deoxynivalenol Than Those Derived from Poultry and Swine.
Toxins (Basel). 10 (4)Apr 11 [Epub ahead of print].